Abstract
ObjectiveEpidermal growth factor receptor 2 (C-erbB-2) is one of the most frequently mutated oncogenes in human tumors. We aimed to evaluate the knockout efficiency of clustered regularly interspaced short palindromic repeat (CRISPR) technology using ultrasound microbubble transfection to target C-erbB-2 in human endometrial cancer (HEC)-1A cells.MethodsThree single guide RNAs (sgRNAs) targeting C-erbB-2 were designed and used to construct CRISPR/CRISPR-associated (Cas)9-C-erbB-2 plasmids. The constructed plasmids were transfected into HEC-1A cells using ultrasound microbubbles. C-erbB-2 knockout cloned cells were identified by green fluorescence. C-erbB-2 mRNA and protein expression was measured by reverse transcription (RT)-PCR and western blotting, respectively.ResultsRT-PCR showed that C-erbB-2 mRNA expression was significantly lower in sgRNA1-transfected cells (0.57 ± 0.06) than in blank (1.00 ± 0.09) and negative-control groups (1.02 ± 0.12). Western blotting revealed C-erbB-2 protein expression to be significantly lower in sgRNA1-transfected cells (0.269 ± 0.033) than in blank (0.495 ± 0.059) and negative-control groups (1.243 ± 0.281). However, there was no significant difference in C-erbB-2 protein and mRNA expression in sgRNA2- and sgRNA3-transfected cells compared with controls.ConclusionUltrasound microbubbles can mediate plasmid transfer into HEC-1A cells to interfere with gene expression and knockout C-erbB-2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.