Abstract

Celastrol (CST) has positive pharmacological effects on various cancers, but clinical application is limited because of poor water solubility and systemic toxicity. Ferric oxide (Fe3O4) has a large specific surface area and can be functionalized by inorganic modification to form complex magnetic drug delivery systems. Herein, Fe3O4 was surface-modified with citric acid and polyethylene glycol (PEG) (via) the Mitsunobu reaction and then covalently bound to CST. Finally, magnetic microbubbles (MMBs) containing perfluoropropane (C3F8) and Fe3O4-PEG2K-CST particles were constructed with poly(lactic-co-glycolic acid) (PLGA) as the shell membrane. In vitro studies showed that ultrasound-mediated MMBs exhibited improved inhibition of VX2 cell proliferation compared to inhibition achieved using MMBs without ultrasound mediation, blank MMBs, or free CST. In ultrasound mode, MMBs have favorable imaging properties. After the application of a high mechanical index, MMBs collapse through the cavitation effect, releasing their internal Fe3O4-PEG2K-CST. The CST is then delivered to the tumor microenvironment under acidic conditions. In magnetic resonance imaging T2 mode, a specific hypointense signal was observed in the tumor area compared with that before treatment, whereas no significant change occurred in the signal intensity of the surrounding organs. After treatment, pathological examination of tumor-bearing rabbit tissues showed that iron elements accumulated in several apoptosis cells in the tumor area, with no apparent abnormalities found in other areas. Thus, ultrasound-mediated MMBs could significantly improve the drug uptake of solid tumors and inhibit tumor growth with favorable biological safety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call