Abstract

Diabetic nephropathy (DN) is defined as persistent proteinuria corresponding to a urinary albumin excretion rate >300 μg/mg in the absence of other non-diabetic renal diseases. The aim of this study was to determine if ultrasound (US)-mediated microbubble (MB) destruction could increase renal interstitial capillary permeability in early DN rats. Diabetes was induced with streptozotocin. DN rats presented with mild micro-albuminuria 30 d after onset of diabetes. DN rats (N = 120) were divided into four groups that received Evans blue (EB) followed by: (i) no treatment (control group); (ii) continuous ultrasonic irradiation for 5 min (frequency = 7.00 MHz, mechanical index = 0.9, peak rarefactional pressure = 2.38 MPa: US group); (iii) microbubble injection (0.05 mL/kg: MB group); and (iv) both ultrasound and microbubble injection (US + MB group). Another 8 DN rats were subjected to ultrasound and microbubbles and then injected with EB after 24 h (recovery group). EB content, EB extravasation and E-selectin mRNA and protein expression significantly increased, and interstitial capillary walls became discontinuous in the US + MB group. Neither hemorrhage nor necrosis was observed on renal histology. Urine samples were collected 24 h post-treatment. There was no hematuria, and the urinary albumin excretion rate did not increase after ultrasound-microbubble interaction detected by urinalysis. EB content returned to the control group level after 24 h, as assessed for the recovery group. In conclusion, ultrasound-mediated microbubble destruction locally increased renal interstitial capillary permeability in DN rats, and should be considered a therapy for enhancing drug and gene delivery to the kidney in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call