Abstract
Cancer stem cells (CSCs), characterized by robust self-renewal capacity and varied differentiation potential, are considered pivotal in the ineffectiveness of cancer therapy. Some strategies targeting CSCs may exhibit limited efficacy due to the rigid extracellular matrix (ECM) in tumor region that still maintains stemness through mechanosensitive pathways. Herein, an ultrasound (US)-mediated intra/extracellular dual intervening strategy was developed for effective tumor stemness inhibition. Specifically, a kind of US-responsive nanodroplets (PAP@Lipid) co-loaded with all-trans retinoic acid (ARTA) and paclitaxel (PTX) are constructed via one step emulsification process. Thereinto, the encapsulated ARTA is beneficial to CSC stemness and chemoresistance, and the perfluorohexane (PFH) core of nanodroplets enables local US enhancement through acoustic droplet vaporization (ADV) effect. Moreover, the enhanced US effect can initiate reactive oxygen species (ROS) generation and aldehyde dehydrogenase (ALDH) downregulation, synergistically diminishing CSC populations in combination with ARTA. More importantly, it also simultaneously destroys the ECM, rendering a softened tumor with reduced stemness level and enhanced vulnerability to PTX, thereby promoting therapeutic effect. The in vivo antitumor evaluations demonstrate the remarkable inhibiting effect of This US-mediated intra/extracellular intervening strategy on both 4T1 and chemoresistant tumors, providing an encouraging paradigm for combating refractory cancers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.