Abstract
Noninvasive imaging of microvascular structures in deep tissues provides morphological and functional information for clinical diagnosis and monitoring. Ultrasound Localization Microscopy (ULM) is an emerging imaging technique that can generate microvascular structures with subwavelength diffraction resolution. However, the clinical utility of ULM is hindered by technical limitations, such as long data acquisition time, high microbubble concentration, and inaccurate localization. In this paper, we propose a Swin transformer-based neural network to perform end-to-end mapping to implement microbubble localization. The performance of the proposed method was validated using synthetic and in vivo data using different quantitative metrics. The results indicate that our proposed network can achieve higher precision and better imaging capability than previously used methods. Furthermore, the computational cost of processing per frame is three to four times faster than traditional methods, which makes the real-time application of this technique feasible in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.