Abstract

In this paper, we focus on segmentation of ultrasound kidney images. Unlike previous work by using trained prior shapes, we employ a parametric super-ellipse as a global prior shape for a human kidney. The Fisher–Tippett distribution is employed to describe the grey level statistics. Combining the grey level statistics with a global character of a kidney shape, we propose a new active contour model to segment ultrasound kidney images. The proposed model involves two subproblems. One subproblem is to optimize the parameters of a super-ellipse. Another subproblem is to segment an ultrasound kidney image. An alternating minimization scheme is used to optimize the parameters of a super-ellipse and segment an image simultaneously. To segment an image fast, a convex relaxation method is introduced and the split Bregman method is incorporated to propose a fast segmentation algorithm. The efficiency of the proposed method is illustrated by numerical experiments on both simulated images and real ultrasound kidney images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call