Abstract

It has been shown that ultrasound (US) stimulation accelerates fracture healing in the animal models and clinical studies. Nitric oxide (NO) is a crucial early mediator in mechanically induced bone formation. Here we found that US stimulation increased NO formation and the protein level of inducible nitric-oxide synthase (iNOS). US-mediated iNOS expression was attenuated by anti-integrin alpha5beta1 or beta1 antibodies but not anti-integrin alphavbeta3 or beta3 antibodies or focal adhesion kinase mutant. Integrin-linked kinase (ILK) inhibitor (KP-392), Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol-2-[(R)-2-O-methyl-3-O-octadecylcarbonate]) or mammalian target of rapamycin (mTOR) inhibitor (rapamycin) also inhibited the potentiating action of US. US stimulation increased the kinase activity of ILK and phosphorylation of Akt and mTOR. Furthermore, US stimulation also increased the stability and activity of HIF-1 protein. The binding of HIF-1alpha to the HRE elements on the iNOS promoter was enhanced by US stimulation. Moreover, the use of pharmacological inhibitors or genetic inhibition revealed that both ILK/Akt and mTOR signaling pathway were potentially required for US-induced HIF-1alpha activation and subsequent iNOS up-regulation. Taken together, our results provide evidence that US stimulation up-regulates iNOS expression in osteoblasts by an HIF-1alpha-dependent mechanism involving the activation of ILK/Akt and mTOR pathways via integrin receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.