Abstract
Here we describe an efficient and rapid way for the polymerization of the 3-Octyl-1-vinylimidazolium Bromide using ultrasonic irradiation. This way promoted high dispersion polymerization using a water-soluble free radical initiator namely 4,4′-Azobis (4-cyanopentanoic acid) and free of dispersant. The ionic liquid monomer was prepared via quaternization of 1-vinylimidazole with octyl bromide also promoted by ultrasound. The polymerization rates were compared with a conventional heating method and appeared to be higher in the case of the ultrasound method within a short reaction time. The structural/morphological features and thermal properties of the obtained products were determined by different analytical techniques such as (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electronic microscopy (SEM, TEM), Fourier transform infrared spectroscopy (FTIR) and NMR Spectroscopy (1H and 13C NMR). The morphology and the thermal behavior of the obtained poly(ionic liquid) were investigated and discussed. The results indicated that self-assembled nanospherical particles of 30–80 nm in diameter were obtained through the ultrasound method, while on the other hand; worm-like/cylindrical agglomerated nanoparticles with irregular sizes 50–300 nm in diameter were obtained via the classical heating method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.