Abstract

We applied the split-step Fourier imaging method to back-propagate the ultrasound zero-offset wavefields acquired on the bone surface to the sources of scatterers, which are the reflecting interfaces. The method required, as an input, an estimated slowness (reciprocal of half the velocity) model to map the time-dependent sonogram to the depth image, which provides the geometric properties of the interfaces. The slowness was approximated by a depth-dependent term and a first-order spatially varying perturbation. Simulated data sets were used to validate the method. The reconstructed images show proper mapping of the interfaces and the fracture, and a reasonable cortical thickness measurement with 8.3% error. The images also illustrate clearly the bone fracture healing process of a 1-mm-wide 45° inclined crack with different in-filled tissue velocities for various healing stages. Reconstruction of a fractured bone plate using data from an in vitro experiment is also presented. This study suggests that the proposed imaging method has good potential in quantification of bone fractures and monitoring of the fracture healing process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.