Abstract
Ultrasound imaging is most popular technique used for breast cancer screening. Lesion segmentation is challenging step in characterization of breast ultrasound (US) based Computer Aided Diagnosis (CAD) systems due to presence of speckle noise, shadowing effect etc. The aim of this study is to develop an automatic lesion segmentation technique in breast US with high accuracy even in presence of noises, artifacts and multiple lesions. This article presents a novel clustering method called Multi-scale Gaussian Kernel induced Fuzzy C-means (MsGKFCM) for segmentation of lesions in automatically extracted Region of Interest (ROI) in US to delimit the border of the mass. Further, a hybrid approach using MsGKFCM and Multi-scale Vector Field Convolution (MsVFC) is proposed to obtain an accurate lesion margin in breast US images. Initially, the images are filtered using speckle reducing anisotropic diffusion (SRAD) technique. Subsequently, MsGKFCM is applied on filtered images to segment the mass and detect an appropriate cluster center. The detected cluster center is further used by MsVFC to determine the accurate lesion margin. The proposed technique is evaluated on 127 US images using measures such as Jaccard Index, Dice similarity, Shape similarity, Hausdroff difference, Area difference, Accuracy, F-measure and analysis of variance (ANOVA) test. The empirical results suggest that the proposed approach can be used as an expert system to assist medical professionals by providing objective evidences in breast lesion detection. Results obtained are so far looking promising and effective in comparison to state-of-the-art algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.