Abstract

BackgroundAlthough high intensity focused ultrasound (HIFU) is a promising technology for tumor treatment, a moving abdominal target is still a challenge in current HIFU systems. In particular, respiratory‐induced organ motion can reduce the treatment efficiency and negatively influence the treatment result. In this research, we present: (1) a methodology for integration of ultrasound (US) image based visual servoing in a HIFU system; and (2) the experimental results obtained using the developed system.Materials and methodsIn the visual servoing system, target motion is monitored by biplane US imaging and tracked in real time (40 Hz) by registration with a preoperative 3D model. The distance between the target and the current HIFU focal position is calculated in every US frame and a three‐axis robot physically compensates for differences. Because simultaneous HIFU irradiation disturbs US target imaging, a sophisticated interlacing strategy was constructed.ResultsIn the experiments, respiratory‐induced organ motion was simulated in a water tank with a linear actuator and kidney‐shaped phantom model. Motion compensation with HIFU irradiation was applied to the moving phantom model. Based on the experimental results, visual servoing exhibited a motion compensation accuracy of 1.7 mm (RMS) on average. Moreover, the integrated system could make a spherical HIFU‐ablated lesion in the desired position of the respiratory‐moving phantom model.ConclusionsWe have demonstrated the feasibility of our US image based visual servoing technique in a HIFU system for moving target treatment.

Highlights

  • High intensity focused ultrasound (HIFU) is well known as a promising non‐invasive tumor treatment modality, and its applications are increasing

  • Motion compensation with high intensity focused ultrasound (HIFU) irradiation was applied to the moving phantom model

  • We have demonstrated the feasibility of our US image based visual servoing technique in a HIFU system for moving target treatment

Read more

Summary

Materials and methods

US imaging and tracked in real time (40 Hz) by registration with a preoperative 3D model. The distance between the target and the current HIFU focal position is calculated in every US frame and a three‐axis robot physically compensates for differences. Because simultaneous HIFU irradiation disturbs US target imaging, a sophisticated interlacing strategy was constructed

Results
| INTRODUCTION
| MATERIALS AND METHODS
| EXPERIMENTS AND RESULTS
| DISCUSSION
| CONCLUSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call