Abstract

Today, ultrasound is increasingly utilized in enzyme modification. Strongly dependent on the specific operational conditions, the modification effect brought by ultrasound can be activation and inactivation of enzymes. This work aims to study the ultrasound mechanisms under different conditions, to investigate the respective roles of free radical effect and mechanical effect in pectinase activation and inactivation, and to reveal the influence of pectinase concentration on the ultrasound-modification effect. When ultrasound was introduced to a liquid system, generation of free radicals was positively correlated with ultrasound intensity and treatment duration, but negatively correlated with temperature. Thiourea with a concentration of 4 mmol L-1 was selected as a free radical scavenger to effectively shield ultrasound free radicals. The highest enzyme activity of pectinase solutions at 0.1, 1.0, and 10.0 mg mL-1 was obtained at the same ultrasound intensity of 4.50 W mL-1 and time of 15 min, where the enzyme activity was increased by 68.24%, 20.98% and 18.83%, respectively. Furthermore, the addition of thiourea enhanced the enzyme activity at each tested ultrasound intensity and time, especially those exceeding the best conditions; it also eliminated the redshift phenomenon that was previously presented in the fluorescence spectra of pectinase samples. Pectinase concentrations did not change the optimum ultrasound conditions for enzyme modification, but pectinase with a low concentration was more vulnerable to ultrasound treatment. During modification, ultrasound mechanical effects dominated in the pectinase activation, while free radical effects dominated in the inactivation process. © 2020 Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.