Abstract

The combined use of ultrasound pulse-echo intensity and Doppler shift frequency is examined as a means to measure strong unsteady three-phase pipe flows of a gas and two liquids. With air, oil, and water as components of the fluid media, particular attention is given to analyze ultrasound responses at the air–oil and oil–water interfaces. Reciprocating slugging is generated inside a 55-mm-diameter circular pipe, of which edges oscillate vertically at a controlled frequency. We use an ultrasound velocity profiler to obtain the 1-D cross-sectional distributions of the instantaneous flow velocity at the sampling rate of 60 Hz. All the measurements are realized by a single ultrasound transducer located outside the pipe. Measurement accuracy is validated using a high-speed camera coupled with particle image velocimetry that is synchronized with the profiler. The results demonstrate that the proposed technique works properly in sensing both interfaces as well as in-phase flow velocity distributions. In addition, multiphase volume flow rates for the constituents are obtained by velocity profile integration assuming vertical phase stratification in an approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.