Abstract

Low-frequency ultrasound generated by a transducer was investigated to activate the raw municipal solid waste incineration (MSWI) fly ashes in the electrokinetic process, aiming at enhancing heavy metal (HM) removal and achieving better remedial efficacy. The maximum removal efficiencies of 69.84%, 64.24%, 67.74% and 59.93% were obtained in the orthogonal tests of ultrasonication for Zn, Pb, Cu and Cd, respectively. The acoustic time of 30 min and controlling temperature of 45 °C in the operating parameters were quantitatively determined to optimize the ultrasonication of the MSWI fly ash matrices. The changes of acoustic time had a significant effect on the extraction efficiencies of all the four heavy metal elements in the sonication optimal experiments. The longer running time was preferred for the pretreatment of the fly ashes in according to the marginal mean removal results. The voltage gradient of 2 V/cm was most likely to improve the removals of four HMs during the electrokinetics in the range of 0.5–2 V/cm. The synergetic application of acidification and ultrasonication for the media treatment was demonstrated to be most effective in enhancing the remedial efficiencies in the further electrokinetic experiments compared with the other activation systems. Correspondingly, the leaching concentrations of Zn, Pb, Cu and Cd in the samples were reduced by 85.92%, 98.22%, 88.53% and 98.34%, respectively. The contaminants were continuously extracted from the solid grains of the fly ashes by the protonic attack and bubble implosion. The obtained risk-assessment-code values indicated the adoption of AUS-EKR system reduced the environmental toxicity for the fly ashes to the maximum extent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.