Abstract
BackgroundThis study aimed to explore the new factors that can predict central lymph node metastasis (CLNM) of papillary thyroid carcinoma (PTC) independently from ultrasound characteristics, elastic parameters, and endocrine indicators. MethodsA total of 391 patients with PTC undergoing thyroidectomy and prophylactic central lymph node dissection from January 2017 to June 2019 were collected to determine the independent predictors of CLNM by single-factor and multivariate logistic regression analysis. ResultsMultivariate logistic regression analysis showed 9 independent predictors of CLNM, age, male, tumors in the middle or lower poles (without tumors in the isthmus), tumors in the isthmus, multiple tumors, and maximum tumor diameter measured by ultrasound, microcalcification, visible surrounding blood flow signal, and the maximum value of elastic modulus (Emax).We used the aforementioned factors to establish a scoring prediction model: predictive score Y(P) = 1/[1 + exp (1.444 + 0.084 ∗ age - 0.834 ∗ men - 0.73 ∗ multifocality - 2.718 ∗ tumors in the isthmus - 0.954 ∗ tumors in the middle or lower poles - 0.086 ∗ tumor maximum diameter - 1.070 ∗ microcalcification - 0.892 ∗ visible surrounding blood flow signal – 0.021 ∗ Emax)]. The area under the curve of the receiver operating characteristic was 0.827. It was found that 0.524 was the highest index of Youden, and the best cutoff value for predicting CLNM. When Y(P)≥0.524, the risk of CLNM in patients with PTC is predicted to be high. Predictive accuracy was 78.5% and 72.4% in the internal validation group and 78.6% in the external validation group. ConclusionsThese data indicate that the scoring prediction model could provide a scientific and quantitative way to predict CLNM in patients with PTC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.