Abstract

Pyro-metallurgical copper slag (CS) waste was used as the source material for ultrasound (US) silica extraction under acidification processes with 26 kHz with HCl, HNO3, and H2SO4 at different concentrations at 100, 300, and 600 W. During acidifying extraction processes, US irradiation inhibited silica gel formation under acidic conditions, especially at lower acid concentrations of less than 6 M, whereas a lack of US irradiation led to enhanced gelation. When US stopped, gelation occurred to a considerable degree, suggesting that the gel particle size distribution was aggregated in the 3–400 µm size range. However, with US, the size was mainly in the 1–10 µm range. Results of elemental analysis indicated that US treatment decreased the co-precipitation of other metal ions such as Fe, Cu, and Al sourced from CS for lower acidic medium, whereas the higher concentration medium accelerated silica gelation and the co-precipitation of other metals. With acids of HCl and HNO3, and H2SO4, the gelations were less likely to occur at 6 M and 3 M during US irradiation, but acidic extraction without US was efficient for silica gelation and co-precipitation of other metals in the purified silica. The silica extraction yield with H2SO4 concentration of 3 M was 80% with 0.04% of Fe, whereas the silica product from HCl 6 M had a 90% extraction yield with only 0.08% of Fe impurity. In contrast, even though the non-US system of HCl 6 M had a higher yield at 96%, the final product had 0.5% Fe impurity, which was much higher than the US system. Consequently, the US extraction process was quite noticeable for silica recovery from CS waste.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.