Abstract

The rise of shear strain value under temperature increase in biological tissue samples in vitro and tissue phantoms was studied and the range of shear modulus and viscosity calculated. It has been shown that the acoustic radiation force-based methods with the usage of ultrasound Doppler probing provides the potential ability of noninvasive real-time monitoring of tissues' ultrasound thermal destruction process. At that, the thermal destruction is possible under action of wave beam that creates the radiation force and local tissue displacements so that tissue ablation and acoustic remote palpation could be realized by means of the same ultrasound transducer. The experiments were performed using gelatin-based tissue-mimicking phantoms and freshly excised samples of bovine muscle tissue. It was determined also that fluctuating pattern of detected displacement amplitude variation is the indicator of the phase transitions beginning in the heated field of soft tissue or tissue phantom. (Email: Evgenij.A.Barannik@univer.kharkov.ua; barannik@pht.univer.kharkov.ua)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call