Abstract

In this study we investigate the potential of parametric images formed from ultrasound B-mode scans using the Nakagami distribution for non-invasive classification of breast lesions and characterization of breast tissue. Through a sliding window technique, we generated seven types of Nakagami images for each patient scan in our dataset using basic and as well as derived parameters of the Nakagami distribution. To determine the suitable window size for image generation, we conducted an empirical analysis using 4 windows, which includes 3 column windows of lengths 0.1875 mm, 0.45 mm and 0.75 mm and widths of 0.002 mm, along with the standard square window with sides equal to three times the pulse length of incident ultrasound. From the parametric image sets generated using each window, we extracted a total of 72 features that consisted of morphometric, elemental and hybrid features. To our knowledge no other literature has conducted such a comprehensive analysis of Nakagami parametric images for the classification of breast lesions. Feature selection was performed to find the most useful subset of features from each of the parametric image sets for the classification of breast cancer. Analyzing the classification accuracy and Area under the Receiver Operating Characteristic (ROC) Curve (AUC) of the selected feature subsets, we determined that the selected features acquired from Nakagami parametric images generated using a column window of length 0.75 mm provides the best results for characterization of breast lesions. This optimal feature set provided a classification accuracy of 93.08%, an AUC of 0.9712, a False Negative Rate (FNR) of 0%, and a very low False Positive Rate (FPR) of 8.65%. Our results indicate that the high accuracy of such a procedure may assist in the diagnosis of breast cancer by helping to reduce false positive diagnoses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call