Abstract

Purpose We hypothesized that contrast-enhanced ultrasound (CEUS) using a microbubble technique to quantify microvascular changes and Nakagami imaging for tissue characterization would provide a new approach for diagnosing and differentiating benign and malignant choroidal lesions. Methods Five patients with choroidal melanoma (CM) and five patients with choroidal hemangioma (CH) were selected. Definity®, which contains perflutren microbubbles, was administered as a slow IV bolus (1 ml). CEUS was performed for 1 min postinjection of the contrast agent with ultrasound radiofrequency data acquired from 10 s to 60 s. The contrast value was calculated for the whole tumor region. A gradient magnitude method was used for each postcontrast frames with 1-second interval, and the time-averaged value in pixel intensity gradient of postinjection frames was estimated and reported. Based on the Nakagami statistical distribution model, two Nakagami parameters, m and Ω, where m (shape parameter), representing tissue heterogeneity, and Ω (scale parameter), representing the average energy of backscattered signals, were studied. Results CEUS analysis showed that the time-averaged estimated contrast was significantly higher (p = 0.008) for CH compared to CM. Furthermore, the time-averaged contrast within the normal choroidal region was significantly higher than the choroidal tumor region for both CH and CM (p = 0.001 for CH cases and p < 0.0001 for CM cases). Nakagami analysis showed that the m estimates were significantly higher (p = 0.032) for CH (m = 0.61) than for CM (m = 0.28), indicating that CH is a more heterogeneous tumor than CM. The Ω estimates were significantly higher (p = 0.0019) for CH (Ω = 0.15) compared to CM (Ω = 0.03). These results may be due to the more vascular structures in CH compared to CM. Conclusions Quantitative intensity-based perfusion analysis using CEUS and backscattering tissue analysis using Nakagami imaging can provide valuable insights to differentiate benign and malignant choroidal lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.