Abstract

Performing a surgical task on a beating heart requires superhuman skill as the surgeon must manually track the heart’s motion while performing a surgical task. However, the ability to operate on a beating heart would eliminate the need to use a mechanical stabilizer or arrest the heart and connect the patient to a heart-lung machine and would consequently eliminate their side effects. This work develops the image processing and control structure for an ultrasound-guided robot-assisted beating heart surgical system that will move the surgical tool tip in synchrony with the heart. This would allow the surgeon to operate through teleoperation on a virtually stabilized point on the heart. In developing this system, the position data acquired from ultrasound images is upsampled and predicted ahead to compensate for the image acquisition and processing delay. We present the results of a user task based on mitral valve annuloplasty performed under ultrasound guidance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.