Abstract

Ultrasound-assisted water extraction was optimized to recover gelling biopolymers and antioxidant compounds from Mastocarpus stellatus. A set of experiments following a Box–Behnken design was proposed to study the influence of extraction time, solid liquid ratio, and ultrasound amplitude on the yield, sulfate content, and thermo-rheological properties (viscoelasticity and gelling temperature) of the carrageenan fraction, as well as the composition (protein and phenolic content) and antiradical capacity of the soluble extracts. Operating at 80 °C and 80 kHz, the models predicted a compromise optimum extraction conditions at ~35 min, solid liquid ratio of ~2 g/100 g, and ultrasound amplitude of ~79%. Under these conditions, 40.3% carrageenan yield was attained and this product presented 46% sulfate and good mechanical properties, a viscoelastic modulus of 741.4 Pa, with the lowest gelling temperatures of 39.4 °C. The carrageenans also exhibited promising antiproliferative properties on selected human cancer cellular lines, A-549, A-2780, HeLa 229, and HT-29 with EC50 under 51.9 μg/mL. The dried soluble extract contained 20.4 mg protein/g, 11.3 mg gallic acid eq/g, and the antiradical potency was equivalent to 59 mg Trolox/g.

Highlights

  • Carrageenans are linear polysaccharides of D-galactose and 3,6-anhydro-D-galactose found in red seaweeds and commercially used as thickening, gelling, texturing, and stabilizing agents in food, cosmetics, and pharmaceuticals [1]

  • The extracted carrageenan fraction was precipitated with ethanol and was further characterized regarding the sulfate content and the thermo-rheological properties, whereas the remaining soluble fraction was analyzed for phenolic, protein, and antiradical properties

  • The carrageenan product obtained under optimal operation conditions was evaluated for the antiproliferative activity on selected humal cancer cells

Read more

Summary

Introduction

Carrageenans are linear polysaccharides of D-galactose and 3,6-anhydro-D-galactose found in red seaweeds and commercially used as thickening, gelling, texturing, and stabilizing agents in food, cosmetics, and pharmaceuticals [1]. Instead of a pure compound, hybrid carrageenans are found, and κ- and ι- forms in particular are attracting interest as gelling agents [2]. These high molecular weight polymers (up to 5000 kDa, average 200–800 kDa) are approved for food applications, whereas degraded carrageenans (10–20 kDa) are not authorized [3]. Other interesting activities of these degraded polysaccharides such as antiviral, antitumoral, antibacterial, or immunostimulant have been reported [4,5,6,7,8] These properties depend on the carrageenan type and structure, sulfation degree and location, molecular weight, and processing methods [9]. Low molecular weight highly sulphated carrageenans are the most active against tumors, and oligocarrageenans induce apoptosis in cancer cells and weaken the immune suppressing effects of antitumor drugs [5,11], suggesting their coupled utilization as both adjuvant or carrier in anticancer treatments

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.