Abstract

For stopping long-time harmful bacterial infection, designing a drug carrier with a highly prolonged release profile is a promising approach that is of interest to different biomedical areas. The subject of this work is to synthesis a novel carrier system through coordination of MIL-88(Fe) to carboxymethyl cellulose (CMC) for enhancing interaction between drug and carrier. We established an ultrasound-assisted synthetic method for in situ synthesis of MIL-88(Fe) in the presence of CMC resulting in CMC/MIL-88(Fe) composite. The CMC/MIL-88(Fe) was loaded with a high amount of Tetracycline (TC) by immersion of carrier to the TC aqueous solution. The release profile in the simulated physiological conditions, pH 7.4, revealed a low initial burst release followed by a sustained and prolonged release over 384 h. The in vitro cytotoxicity of CMC/MIL-88(Fe) against Human skin fibroblast (HFF-1) cells was calculated by MTT assay and showed a good cytocompatibility. The antibacterial activity was found for TC-loaded CMC/MIL-88(Fe) toward both E. coli and S. aureus with MIC 64 mg·ml−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.