Abstract
Ultrasonic soil washing processes using organic solvents were investigated for the development of novel remediation technologies for persistent organic pollutants (POPs)- contaminated soils. Aluminum foil erosion was first tested to understand sonophysical activity in water, methanol (polar) and n-hexane (nonpolar) in a 28 kHz double-bath-type sonoreactor. Significant sonophysical damage on the aluminum foil was observed at the antinodes for all solvents, and the order of degree of sonophysical damage was as follows: water > methanol > n-hexane. Subsequently, conventional (mechanical mixing only) and ultrasonic soil washing (mechanical mixing and ultrasound) techniques were compared for the removal of polychlorinated biphenyls (PCBs) from soil. Two types of contaminated soils, fresh (Soil A, C0 = 2.5 mg/kg) and weathered (Soil B, C0 = 0.5 mg/kg), were used and the applied soil-to-liquid (S:L) ratio was 1:5 and 1:10 for methanol and n-hexane, respectively. The polar solvent significantly increased washing efficiencies compared to the nonpolar solvent, despite the nonpolar nature of the PCBs. Washing efficiency was significantly enhanced in ultrasonic soil washing compared to conventional washing, owing to macro- and micro-scale sonophysical actions. The highest washing efficiencies of 90% for Soil A and 70% for Soil B were observed in the ultrasonic washing processes using methanol. Additionally, a single operation of the ultrasonic washing process was superior to two sequential processes with conventional mixing in terms of washing efficiency, consumption of washing agents, treatment of washing leachate, and operation time. Finally, the removal of PCBs in an organic solvent (methanol) was investigated in photolytic and sonolytic processes for the post-treatment of soil washing leachate. A photolysis efficiency of 80% was obtained within 60 min of UV exposure for intensities of 1.0, 2.0, and 4.0 W/cm2. The primary mechanism of PCBs degradation is photolytic dechlorination. In contrast, no degradation was detected in the sonolytic process, as the excess organic solvent acted as a strong radical scavenger.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.