Abstract
The major drawback hampering siRNA therapies from being more widely accepted in clinical practice is its insufficient accumulation at the target site mainly due to poor cellular uptake and rapid degradation in serum. Therefore, we designed a novel polymeric siRNA carrier system, which would withstand serum-containing environments and tested its performance in vitro as well as in vivo. Delivering siRNA with a system combining an arginine-grafted bioreducible polymer (ABP), microbubbles (MBs), and ultrasound technology (US) we were able to synergize the advantages each delivery system owns individually, and created our innovative siRNA–ABP–MB (SAM) complexes. SAM complexes show significantly higher siRNA uptake and VEGF protein knockdown in vitro with serum-containing media when compared to naked siRNA, and 25k-branched-polyethylenimine (bPEI) representing the current standard in nonviral gene therapy. SAM complexes activated by US are also able to improve siRNA uptake in tumor tissue resulting in decelerating tumor growth in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.