Abstract

The molecular interaction of biopolymers with an array of substrates offers interesting insight into the adsorption phenomenon. The present work proposes the preparation and characterization of cellulose–methyltrioctylammonium chloride (MeTOACl)–a room temperature ionic liquid (IL) blend polymeric sorbent and its application for the adsorption of carcinogenic chromium(VI). The blend adsorbent material was synthesized in a relatively green solvent (methylisobutylketone) medium by ultrasonication. The mechanism of interaction of biopolymer with the ionic liquid could be conceptualized as electrostatic attraction, hydrogen bonding, and Van der Waals force of attraction with the hydroxyl groups of cellulose as a bilayer assembly. The composition, crystallinity, and the surface area of the prepared material were comprehensively characterized using FT-IR, solid-state 13C NMR, TGA, XRD, SEM, EDX, XPS, and BET isotherm study. The adsorption capacity of chromium(VI) calculated from Langmuir isotherm model was found to be 38.94mgg−1 with adherence to the second-order kinetics. The study of thermodynamic parameters that affect the sorption process indicated the spontaneity and exothermic nature of adsorption. The green aspect in the methodology is brought out in the regeneration of the adsorbent, where Cr(VI) could be effectively reduced to the less toxic Cr(III) using ascorbic acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call