Abstract

Lead-rich and antimony-rich oxidizing slag was subjected to regular HCl–NaCl leaching, with the experimental conditions optimized under which ultrasound was introduced. After only 15min of ultrasound-assisted leaching, the leaching rate of Sb resembled that after 45min of regular leaching. Ultrasonic treatment considerably elevated the leaching rates of Sb and Pb, and shortened the leaching time. With the decrease of particle size, the leaching rate of Sb and Pb increased gradually. Especially, as the particle size of the slag was greater than 0.217mm, the ultrasonic leaching effects of Sb and Pb were significantly higher than that of regular leaching effects. The temperature exhibited great effect on ultrasonic leaching performance. As the temperature increased, the leaching rates of Sb and Pb increased step by step. In case the temperature was higher than 85°C, the increasing speed of the leaching rates for Sb and Pb tended to be slow. Increasing ultrasonic power could augment the leaching rate or accelerate the procedure till the same leaching rate. However, since ultrasound failed to energize the formation of new reaction pathways, the maximum leaching rates of Sb and Pb were determined by their phase compositions rather than by ultrasonic field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.