Abstract

A cost effective and environmentally benign ultrasonic method has been developed for the synthesis of InVO4 (InV), In2S3 (InS) and the InVO4/In2S3 heterostructure (InV/InS). All the designed materials were evaluated for their structural, morphological, spectroscopic, and electrochemical characterizations. Materials were examined for photocatalytic, sonocatalytic, and sonophotocatalytic degradation of carbofuran (CBF) and diazinon (DZN) pesticides under visible light. InV/InS showed enhanced degradation of CBF and DZN when compared to InV and InS. Photocatalytic degradation was accelerated by ultrasonication and found to degrade 97 and 98 % of CBF and DZN in 60 and 70 min, respectively. The reaction conditions, like pH, catalyst dosage, acoustic intensity, and ultrasound power, were carefully optimized. Electron spin resonance (ESR) spectroscopy shows the generation of superoxide radical anion and hydroxyl radicals as reactive species during photoredox reaction. The CBF and DZN degradation intermediates were analyzed using liquid chromatography mass spectroscopy (LC-MS) that shows the mineralization of the CBF and DZN to CO2 and H2O. The effect of Cl−, and PO43− were examined towards degradation of CBF and DZN under optimal conditions in the presence of InV/InS. The degradation of CBF and DZN is decreased in presence of Cl−, CO32– and NO3– but PO43− ions does not show any effect on degradation. The bandgap and Mott-Schottky results suggest the existence of type-II heterostructure between InV and InS through the interface. The synthesis of heterostructure and degradation of pesticides utilizes ultrasonic waves, which prove their multiple applications and attract researchers towards the effective use of sonication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call