Abstract

Abstract Lipase-mediated, ultrasound-assisted synthesis of poly-ε-caprolactone was investigated. It was found that ultrasound irradiation helped to improve the rate constant of poly-ε-caprolactone chain propagation (kp) at high initial monomer (ε-caprolactone) concentration. The enhancement of kp ranged from 34% to 46% at 22.5–18.0 M initial monomer concentration, respectively. In a system proned to time-dependent mass-transfer limitation due to polymer chain extension, the acoustic effects could have also allowed the reaction to continue longer compared to non-sonicated process until it became impossible at highly elevated reaction mixture viscosity(>2,000 times increase from initial viscosity). Consequently, it also helped to improve monomer conversion. In a continuous flow polymerization system, a plug flow reactor system is recommended due to its lowest volume for maximum conversion compared to a continuously stirred tank reactor system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.