Abstract

Pharmaceutical wastewaters have several negative effects on human health. This study reports heterogeneous and ultrasound assisted electro Fenton (HSEF) for efficient degradation of Phenazopyridine (PHP). The high silica zeolite socony mobil–5 (ZSM-5) nanocatalyst is synthesized by hydrothermal technique and impregnated with iron species (0.1Fe-ZSM-5). The surface and textural properties of the synthesized nanocatalyst were characterized by X-ray Diffraction (XRD), Transmission electron Microscopy (TEM) and N2 adsorption-desorption techniques. The nanocatalyst includes the high crystallinity (ca. 72.41 %), surface area (ca. 294.40 m2g-1) and uniform dispersion of Fe species. The optimum operating conditions of the HSEF system are pH= 7, applied current of 100 mA, 0.1Fe-ZSM-5 nanocatalyst concentration of 0.2 gL-1 and ultrasonic power of 600 WL-1 which result in the highest PHP removal efficiency. The high performance of the developed nanocatalyst in three consecutive runs confirms the reusability of the nanocatalyst. The results show that the HSEF system has a high capacity for the efficient removal of PHP without requiring long reaction time, high applied current and strict acidic conditions which candidates it for the industrial applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.