Abstract
Metal-organic frameworks (MOFs) are useful as drug delivery carriers with high loading capacity and excellent biocompatibility. We fabricated a new drug carrier based on MIL-101(Cr) environmentally and loaded it with 47.2 wt% WR-1065 (active metabolite of amifostine). Moreover, the permeability and stability of these nanoparticles increased after PEGylation by the N-hydroxysuccinimide active ester protocol. Then, a “green” continuous-flow system equipped with an ultrasound applicator was newly designed to prepare the nanoparticles under the effect of acoustic cavitation. Response surface methodology (RSM) was used to optimize the large-scale process conditions with Box-Behnken design to obtain high space-time yield (5785 kg m−3 day−1). These less toxic MOFs nanoparticles increased cell viability by scavenging the accumulated reactive oxygen species and resisting DNA damage after irradiation. They are capable of mitigating radiation injury, achieving a 30-d survival rate of 90% in mice after lethal total body irradiation (8.0 Gy). This countermeasure significantly improved the peripheral blood cell count, hematopoietic stem and progenitor cells frequency, and clonogenic function of hematopoietic progenitor cells. It probably prevents irradiation-induced hematopoietic damage through the p53-dependent apoptotic pathway. Therefore, ultrasound-assisted continuous-flow synthesis is a sustainable method to produce MOFs on a large scale for radioprotection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.