Abstract

BackgroundBrace treatment is the most effective non-surgical treatment for AIS. High initial in-brace correction increases successful brace treatment outcomes. The objective of this study was to investigate if real-time ultrasound (US) can aid orthotists in selecting the pad pressure level and location resulting in optimal in-brace correction of the spine.MethodsTwenty six AIS subjects participated in this pilot study with 17 (2 M, 15 F) in the control group and 9 (2 M, 7 F) in the intervention group. For the control group, the standard method was used to design their braces. In addition to the standard of care, a medical 3D ultrasound (US) system, a custom pressure measurement system and in-house software were used to select pad placement and pressure levels for the intervention group. The orthotist used a custom standing Providence brace design system to apply pressures against the patient’s torso. The applied pad pressures were recorded. A real-time US spinal image was displayed. Cobb angle measurements from the baseline and the assessment scan were performed. The orthotist then decided if an adjustment was needed in terms of altering the pad locations and pressure levels. The procedures may be repeated until the orthotist attained the best simulated in-brace correction configuration to cast the brace.ResultsIn the control group, 8 of 17 (47%) subjects needed a total of 16 brace adjustments after initial fabrication requiring a total of 33 in-brace radiographs. For the intervention group, the orthotist tried additional configurations in 7 out of 9 cases (78%). Among these 7 revised cases, 5 showed better stimulated in-brace corrections and were subsequently used to cast the brace. As a result, only 1 subject required a minor adjustment after initial fabrication. The total number of in-brace radiographs in the intervention group was 10.ConclusionsThe use of the 3D ultrasound system provided a radiation-free method to determine the optimum pressure level and location to obtain the best stimulated in-brace correction during brace casting. The average number of radiographs per subject taken prior to final brace implementation with the interventional group was significantly lower than the control group.

Highlights

  • Brace treatment is the most effective non-surgical treatment for AIS

  • Adolescent idiopathic scoliosis (AIS) is a threedimensional deformity of the spine associated with vertebral rotation due to an unknown cause

  • Bracing is typically prescribed either based on guidelines set by the Scoliosis Research Society [5] or by the Society on Scoliosis Orthopaedic and Rehabilitation Treatment (SOSORT) [6], in which the Cobb angle is greater than 20° in a child with considerable growth remaining or show at least 5° of Cobb angle increase between consecutive clinic visits

Read more

Summary

Introduction

High initial in-brace correction increases successful brace treatment outcomes. Adolescent idiopathic scoliosis (AIS) is a threedimensional deformity of the spine associated with vertebral rotation due to an unknown cause. It affects adolescents’ emotional and social wellbeing, and may cause physiological problems in severe cases. Brace wear time is only one factor which affects brace treatment outcomes, others include a) growth or curve based risk, b) the in-brace correction, and c) the wear tightness relative to the prescribed level (quality of brace wear) [11,12]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call