Abstract

Currently, as a promising alternative protein source, the interest of edible insect protein has been continuously increased. However, the extraction processing had distinct effects on the physicochemical properties and functionalities of this novel and sustainable protein. In this study, Tenebrio molitor larvae protein (TMLP) was extracted via ultrasound (US)-assisted alkaline extraction. The changes of extraction kinetics, physicochemical characteristics, and functional properties of TMLP as a function of US time (10, 20, 30, 40, 50 min) were investigated. The results showed that 30 min US treatment rendered the maximum protein yield (60.04 %) (P < 0.05). Meanwhile, Peleg's model was considered a suitable model to represent the extraction kinetics of TMLP, with a correlation coefficient of 0.9942. Moreover, the protein secondary structure, particle size, and amino acid profiles of TMLP were changed under the US-assisted alkaline extraction process. Additionally, a significant improvement of the functional properties of TMLP extracted with this method was observed compared to traditional alkaline extraction. In conclusion, the present work suggests that US-assisted alkaline extraction could be considered as a potential method to improve the protein yield, quality profiles, and functional properties of TMLP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call