Abstract

Chlorpyrifos is a hazardous material that pollutes the environment and also poses risks to human health. Thus, it is necessary to remove chlorpyrifos from aqueous media. In this study, chitosan-based hydrogel beads with different content of iron oxide-graphene quantum dots were synthesized and used for the ultrasonic-assisted removal of chlorpyrifos from wastewater. The results of batch adsorption experiments showed that among the hydrogel beads-based nanocomposites, the chitosan/graphene quantum dot‑iron oxide (10) indicated a higher adsorption efficiency of about 99.997 % at optimum conditions of the response surface method. Fitting the experimental equilibrium data to different models shows that the adsorption of chlorpyrifos is well described by the Jossens, Avrami, and double exponential models. Furthermore, for the first time, the study of the ultrasonic effect on the removal performance of chlorpyrifos showed that the ultrasonic-assisted removal of chlorpyrifos significantly reduces the equilibration time. It is expected that the ultrasonic-assisted removal strategy can be a new method to develop highly efficient adsorbents for rapid removal of pollutants in wastewater. Also, the results of the fixed bed adsorption column showed that the breakthrough time and exhausting time of chitosan/graphene quantum dot‑iron oxide (10) were equal to 485 and 1099 min, respectively. And finally, the adsorption-desorption study showed the successful reuse of adsorbent for chlorpyrifos adsorption in seven runs without a significant decrease in adsorption efficiency. Therefore, it can be said that the adsorbent has a high economic and functional potential for industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.