Abstract
An overview of recent work on the interaction of elastic waves with dislocations is given. The perspective is provided by the wish to develop nonintrusive tools to probe plastic behavior in materials. For simplicity, ideas and methods are first worked out in two dimensions, and the results in three dimensions are then described. These results explain a number of recent, hitherto unexplained, experimental findings. The latter include the frequency dependence of ultrasound attenuation in copper, the visualization of the scattering of surface elastic waves by isolated dislocations in LiNbO3, and the ratio of longitudinal to transverse wave attenuation in a number of materials.Specific results reviewed include the scattering amplitude for the scattering of an elastic wave by a screw, as well as an edge, dislocation in two dimensions, the scattering amplitudes for an elastic wave by a pinned dislocation segment in an infinite elastic medium, and the wave scattering by a sub-surface dislocation in a semi-infinite medium. Also, using a multiple scattering formalism, expressions are given for the attenuation coefficient and the effective speed for coherent wave propagation in the cases of anti-plane waves propagating in a medium filled with many, randomly placed screw dislocations; in-plane waves in a medium similarly filled with randomly placed edge dislocations with randomly oriented Burgers vectors; elastic waves in a three-dimensional medium filled with randomly placed and oriented dislocation line segments, also with randomly oriented Burgers vectors; and elastic waves in a model three-dimensional polycrystal, with only low angle grain boundaries modeled as arrays of dislocation line segments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.