Abstract

AbstractA continuous ultrasound assisted process using a single screw compounding extruder with an ultrasonic attachment was developed to prepare polyolefin/clay nanocomposites. High‐density polyethylene and isotactic polypropylene were compared. The feed rate that controls the residence time of the polymer in the ultrasonic treatment zone was varied. Die pressure and power consumption were measured. Rheological properties, morphology, and mechanical properties of the untreated and ultrasonically treated nanocomposites were studied. Similarities and differences of obtained nanocomposites are discussed based on their properties and structural characteristics. The modified Halpin‐Tsai theory of composite materials has been employed in order to predict the effect of incomplete exfoliation of clay platelets on the Young's modulus of the nanocomposites. A good agreement between experimental and theoretical data has been observed when reduction of the reinforcement efficiency of clay had been incorporated through the reduced aspect ratio of elementary clay platelets. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.