Abstract

To investigate the biomechanical properties of porcine oral tissues with in vivo ultrasonography and to compare the difference between oral alveolar mucosa and gingival tissue concerning compressional and tensile mechanical strain. Sinclair minipigs (6 females and 4 males, 6 to 18 months of age) were anesthetized for ultrasonography. In vivo high-frequency tissue harmonic ultrasound (12/24 MHz) cine-loops were obtained while inducing mechanical tissue stress (0 to 1 N). Post-processing strain analysis was performed in a cardiac speckle tracking software (EchoInsight®). Region of interest (ROI) was placed for gingival and alveolar mucosa tissues for longitudinal (compressional) and tensile strain analyses. A calibrated gel pad was employed to determine the absolute force (pressure) for the measured tissue strain response function. The resulting elasticity data was statistically analyzed using custom Matlab scripts. In total, 38 sonography cine-loops around the third premolars were included in the investigation. The longitudinal strain of alveolar mucosa was found to be significantly (P < .05) larger than that of gingiva . Across the measured force range, ~ 1.7 × . Significant differences between alveolar mucosa and gingiva tissues were found for all forces. The tensile strain of the alveolar mucosa was found to be ~2 × (on the epithelial surface of the gingiva). Both were statistically significantly different for forces exceeding ~0.08 N. At depth, that is, 500 and 1000 μm below the epithelial surface, the gingiva was found to have less ability to stretch contrary to the alveolar mucosa. Gingival tissue at 500 μm depth has significantly less tensile strain than at its surface and more than at 1000 μm depth. In contrast, the tensile strain of alveolar mucosa is largely independent of depth. Ultrasonography can reveal significant differences in oral alveolar mucosal and gingival elastic properties, such as compressional and tensile strain. Under minute forces equivalent to 10 to 40 g, these differences can be observed. As dental ultrasound is a chairside, and noninvasive modality, obtaining real-time images might soon find clinical utility as a new diagnostic tool for the objective and quantitative assessment of periodontal and peri-implant soft tissues in clinical and research realms. As ultrasound is a safe modality with no known bioeffects, longitudinal monitoring of areas of concern would be particularly attractive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.