Abstract

Recently, integrated and sustainable methods for extracting active substances from plant materials using green solvents, i.e., ionic liquids, have gained increasing attention. Ionic liquids showsuperiority over conventional organic solvents; however, they also exhibit negative factors and problems, such as high viscosity, poor water intermiscibility, intensive foaming and poor affinity for fat-soluble substances. The proposed method utilizes ultrasonic-enhanced surface-active ionic liquid-based extraction and defoaming (UESILED) to improve the extraction efficiency of ionic liquids. Single-factor experiments and a Box-Behnken design (BBD) were utilized to optimize the extraction procedure. The optimal conditions were as follows: extraction solvent, [C10MIM]Br; ultrasonic treatment time, 28 min; ultrasonic irradiation power, 437 W; liquid–solid ratio, 10 mL/g; particle size, 60 ~ 80 mesh; ultrasonication temperature, 313 K; and [C10MIM]Br solution concentration, 0.5 mol/L. In comparison with those of other reference extraction methods, the proposed method exhibited higher yields of two furocoumarins and operational feasibility. Moreover, the mechanism of UESILED was elaborated in terms of accelerating infiltration, dissolution and defoaming. The feasible and efficient ultrasonic-enhanced ionic liquid-based extraction established in this study strongly contributes to overcoming the limitations of ionic liquid solvents. The present research indicates that this improved process will be beneficial for the extraction of other fat-soluble substances and provides promising concepts and experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call