Abstract

V-type starches comprise single helical structures that can be complexed with other small hydrophobic molecules. The development of the subtypes of these assembled V-conformations is dependent on the helical state of the amylose chains during complexation, which is influenced by the pretreatment employed. In this work, the effect of preultrasonication on the structure and in vitro digestibility of preformed V-type lotus seed starch (VLS) and its potential for complexing with butyric acid (BA), was investigated. The results showed that ultrasound pretreatment did not affect the crystallographic pattern of the V6-type VLS. The optimal ultrasonic intensities increased the crystallinity and molecular ordering of the VLSs. With an increase in the preultrasonication power, the pores on the VLS gel surface decreased in size and were more densely distributed. The VLSs formed at 360 W were less vulnerable to digestive enzymes than their untreated counterparts. Additionally, their highly porous structures could accommodate numerous BA molecules, and thus generated inclusion complexes via hydrophobic interactions. These findings would provide valuable insights into the ultrasonication-mediated formation of VLSs and suggest their potential application as carriers for the delivery of BA molecules to the gut.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call