Abstract

This study presents the state-of-art research about the assembly of soy proteins in nanocarriers, liposomes, and its design includes different physicochemical strategies and approaches: two-step enzymatic hydrolysis of soy concentrate, hydrolysate encapsulation by using phospholipids and cholesterol, and application of ultrasonication. Achieved results revealed that ultrasonication, together with cholesterol addition into phospholipid layers, improved the stability of nanoliposomes, and a maximum EE value of 60.5% was obtained. Average size of peptide-loaded nanoliposomes was found to be from 191.1 to 286.7nm, with a ζ potential of -25.5 to -34.6mV, and a polydispersity index of 0.250-0.390. Ultrasound-assisted encapsulation process did not lead to a decrease in the antioxidant activity of the trapped peptides. FTIR has indicated an effective hydrophobic interaction between phosphatidylcholine and hydrolysate peptides. TEM and SEM have confirmed the spherical nanocarrier structure and unilamelarity. Prolonged gastrointestinal release and stability of peptides have been enabled by liposome nanocarriers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call