Abstract

In this work, undoped and cobalt-doped ZnO thin films were deposited at 275±5°C on glass substrates by the ultrasonic spray pyrolysis technique. The structural, electrical, optical and surface characterization of the films as a function of the cobalt concentration in the spraying solution were studied by means of x-ray diffractometer, current–voltage characteristics, UV–vis spectrophotometer and atomic force microscope, respectively. X-ray diffraction reveals that the films are polycrystalline in nature with preferred orientations of (002) for the ZnO:Co (0, 2, 4at.%) and (100) for the ZnO:Co (6at.%). The optical transmittance of all films was studied as a function of wavelength in the range of 300–1100nm. They exhibit high transparency in the visible wavelength region with some interference fringes and sharp ultraviolet absorption edges. The optical band gap and Urbach energy values of the films were found in the range of 3.250–3.301eV and 90–230meV, respectively. The electrical studies for all films were carried out by using conductivity-temperature measurements and it was seen that the electrical conductivity of ZnO films decreases slightly depending on the increasing of Co doping. Also, Co doping increases both energies of donor-like traps and activation energy for ZnO films. The surface morphology was analyzed by atomic force microscope and a strong dependence on the cobalt incorporation was found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.