Abstract
The objective of this study is to investigate the effects of application of ultrasound on the physical properties of a novel NVC (N-vinylcaprolactam)-containing conventional glass-ionomer cement (GIC). Experimental GIC (EXP) samples were made from the acrylic acid (AA)-itaconic acid (IA)-NVC synthesized terpolymer with Fuji IX powder in a 3.6:1 P/L ratio as recommended by the manufacturer. Specimens were mixed and fabricated at room temperature and were conditioned in distilled water at 37°C for 1 day up to 4 week. Ultrasound (US) was applied 20 s after mixing by placing the dental scaler tip on the top of the cement and applying light hand pressure to ensure the tip remained in contact with cement without causing any deformation. Vickers hardness was determined using a microhardness tester. The working and setting times were determined using a Gillmore needle. Water sorption was also investigated. Commercial Fuji IX was used as control for comparison (CON). The data obtained for the EXP GIC set through conventional set (CS) and ultrasonically set (US) were compared with the CON group, using one-way ANOVA and the Tukey multiple range test at α = 0.05. Not only ultrasonic (US) application accelerated the curing process of both EXP cement and CON group but also improved the surface hardness of all the specimens. US set samples showed significantly lower water sorption values (P < 0.05) due to improved acid-base reaction within the GIC matrix and accelerated maturation process. According to the statistical analysis of data, significant increase was observed in the surface hardness properties of CS and US specimens both in EXP samples and the CON groups. It was concluded that it is possible to command set GICs by the application of ultrasound, leading to GICs with enhanced physical and handling properties. US application might be a potential way to broaden the clinical applications of conventional GICs in restorative dentistry for procedures such as class V cavity restorations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.