Abstract

A complex approach for the production of corrosion resistant nanostructured surface layer on the Ti6Al4V alloy is reported in this article. Surface modification was conducted using sequential application of electric discharge surface alloying (EDSA) with α-titanium and ultrasonic impact treatment (UIT) induced the nanostructuring of the EDSA-formed Ti-layer. X-ray diffraction and TEM analysis show that the applied modifications form the outmost surface layer of ~20 μm thick comprised the nanoscale grain structure with a grain size of 10-30 nm. Additionally, the UIT-induced mechanochemical oxidation of the modified surface was observed by SEM with energy dispersive X-ray microanalysis. The produced nanostructured α-titanium surface layer shows enhanced microhardness and better corrosion behaviour in saline solution than those of the original and UIT-processed Ti6Al4V alloys. Thus, the complex treatment applied can be recommended for the surface finishing of the products made of multi-phase titanium alloys, such as biomedical implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.