Abstract

Conventional methods determine the ultrasonic wave speed measuring the medium path length propagated by a pulsed wave and the corresponding time-of-flight. In this work, the wave speed is determined without the need of the path length. A transmit transducer sends a pulsed wave into the medium (wave speed constant along the beam axis) and the backscattered signal is collected by a hydrophone placed at two distinct positions near the transmitted beam. The time-delay profile, between gated windows of the two rf-signals received by the hydrophone, is determined using a cross-correlation method. Also, a theoretical time-delay profile is determined considering the wave speed as a parameter. The estimated wave speed is obtained upon minimization of the rms error between theoretical and experimental time-delay profiles. A PZT conically focused transmitting transducer with center frequency of 3.3 MHz, focal depth of 30 mm, and beam full width (-3 dB) of 2 mm at the focus was used together with a PZT hydrophone (0.8 mm of aperture). The method was applied to three phantoms (wave speed of 1220, 1540, and 1720 m/s) and, in vitro, to fresh bovine liver sample, immersed in a temperature-controlled water bath. The results present a relative speed error less than 3% when compared with the sound speed obtained by a conventional method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.