Abstract

Ultrasonic vibration-assisted (UV-A) pelleting can increase cellulosic biomass density and reduce biomass handling and transportation costs in cellulosic biofuel manufacturing. Effects of input variables on pellet density in UV-A pelleting have been studied experimentally. However, there are no reports on modeling of pellet density in UV-A pelleting. Furthermore, in the literature, most reported density models in other pelleting methods of biomass are empirical. This paper presents a constitutive model to predict pellet density in UV-A pelleting. With the predictive model, relations between input variables (ultrasonic power and pelleting pressure) and pellet density are predicted. The predicted relations are compared with those determined experimentally in the literature. Model predictions agree well with reported experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.