Abstract

The rapid growth of the electronics industry and the increase in processor power levels requires new techniques to improve the heat transfer rate in their cooling systems. In this study, ultrasonic vibration technology was introduced as an active method to enhance the thermal performance of water-cooling systems. The effects of ultrasonic vibrations at power levels of 30, 60, and 120 watts for different cooling airflow rates were investigated experimentally. The results were validated with available empirical correlations to ensure the accuracy of the measurement systems. The findings indicated that the ultrasonic vibrations enhanced the heat transfer in the liquid-cooling heat exchangers. In addition, the thermal performance of the ultrasonic vibrations was improved by reducing the airflow rate and increasing the ultrasonic power. In addition to the feature of heat transfer improvement, ultrasonic waves are widely used for the cleaning of different types of heat exchangers. Regarding the anti-fouling and anti-accumulation effects of the ultrasonic vibrations, the introduced technology could provide a practical way for developing high-performance nanofluids-based computer cooling systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.