Abstract

In this paper, a novel ultrasonic vibration-assisted laser atomization process for producing fine metallic powder with average particle diameter of about 75–95μm is proposed. The process involves irradiation of a high power continuous wave laser on a consumable metallic substrate vibrating at an ultrasonic frequency. The laser irradiation on the vibrating substrate causes surface melting and expulsion of fine droplets. Preliminary results are presented for the atomization of AISI 316 stainless steel using CO2 laser power of 950W and vibration frequency of 20kHz. The average particle size and size distribution is not significantly influenced by vibration displacement consistent with capillary wave theory of atomization. The microstructure of the larger atomized particles showed fine dendritic structure at the surface and shrinkage porosity at the center of particles indicating multiple surface nucleation for solidification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.