Abstract

Utilization of the biological macromolecule Dendrobium officinale polysaccharide (DOP) as a functional ingredient is limited by its high intrinsic viscosity and molecular weight. The goal of the present study was to improve rheological properties of DOP by ultrasonic treatment. Such a treatment resulted in the degradation of DOP and consequent reduction of rheological properties. Among DOP samples treated with ultrasonication at low (L), medium (M), and high (H) power intensities (25, 50, 75 w/cm2), M‐DOP displayed the highest reactive oxygen species (ROS) and reactive nitrogen species (RNS) radical scavenging activity in vitro. In a mouse D‐galactose (D‐Gal)‐induced aging model, M‐DOP significantly increased activities of antioxidant enzymes and reduced levels of pro‐inflammatory cytokines in liver. Real‐time polymerase chain reaction (RT‐PCR) analysis indicated that M‐DOP upregulated messenger RNA (mRNA) expression of anti‐inflammatory/antioxidant proteins such as Nrf2 (nuclear factor erythroid 2‐related factor), hemeoxygenase‐1 (HO‐1), and NAD(P)H:quinone oxidoreductase (NQO1) in liver. In summary, M‐DOP displayed a strong radical scavenging activity in vitro, and ameliorated liver injury in the mouse aging model through the promotion of Nrf2/HO‐1/NQO1 signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.