Abstract
A new modeling technique for ultrasonic transducers is developed in order to build an analytical model in the Laplace s-domain. The model is intended for use in analog circuit CAD system for the front-end electronic design and to visualize the acoustic pulse modifications under different excitation conditions. The transducer is characterized by two analytical functions representing the driving point impedance and the electroacoustic transfer function. The transfer function is obtained as the ratio of the transducer axial response and the excitation voltage. The reference responses of the impedance and transfer function are derived by the Fourier transform of the measured signals. The model is derived by the measurements of the driving point current and voltage, and the field axial response is sensed by a hydrophone. The procedure for the model identification is described. The results of testing 5-MHz transducer for medical applications are presented. An approach for the design of broadband matching networks using a constant resistance network is reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.