Abstract

The study described here was aimed at investigating the feasibility of using the ultrasonic through-transmission technique to estimate human musculoskeletal and fat properties. Five hundred eighty-two volunteers were assessed by dual-energy X-ray absorptiometry (DXA) and ultrasonic transmission techniques. Bone mineral density (BMD), muscle and fat mass were measured for both legs and the whole body. Hip BMD and spine BMD were also measured. Ultrasonic transmission measurements were performed on the heel, and the measured parameters were broadband ultrasound attenuation (BUA), speed of sound (SOS), ultrasonic stiffness index (SI), T-score and Z-score, which were significantly correlated with all measured BMDs. The optimal correlation was observed between SI and left-leg BMD (p < 0.001) before and after adjustment for age, sex and body mass index (BMI). The linear and partial correlation analyses revealed that BUA and SOS were closely associated with muscle and fat mass, respectively. Multiple regressions revealed that muscle and fat mass significantly contributed to the prediction of transmission parameters, explaining up to 17.83% (p < 0.001) variance independently of BMD. The results suggest that the ultrasonic through-transmission technique could help in the clinical diagnosis of skeletal and muscular system diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.