Abstract

An ultrasonic inspection method for a graphite ingot was developed to detect internal planar flaws that are oriented in various directions; this method is necessary to perform quality assurance of throat inserts of solid rocket motors. Major problems that are unique to this graphite inspection were solved. An ultrasonic beam in graphite shows uneven propagation behavior both within and among individual ingots. That individual unevenness engenders variation in echo heights of flat-bottomed holes, which can be compensated through two-dimensional scanning accompanying a change in incident angles of two directions. This scanning procedure is therefore necessary to detect internal planar flaws that orient in various directions. The unevenness among ingots can be compensated by measuring the wave velocity and attenuation coefficient in the test block itself before inspection. A test block including artificial internal flaws was fabricated and inspected using the developed method. It was then sliced into several thin disks. The sliced disks were inspected using the conventional ultrasonic testing method using a normal beam technique. The two methods detected identical flaws, thereby validating the developed method. The technique described here has been enacted as JIS Z 2356 under the title, ‘‘Method of automatic ultrasonic inspection for graphite ingot’’. [doi:10.2320/matertrans.I-MRA2007851]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.